Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 257(Pt 2): 128683, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092103

RESUMO

In this research, a polymeric composite based on a chitosan/bacterial cellulose (CS/BC) matrix filled with MIL-100(Fe) particles was prepared to solve the recyclability of issue MIL-100(Fe) particles and utilized as an efficient adsorbent for removing dacarbazine (DTIC) from wastewater. The adsorption capacity of the composite (CS/BC-MIL) was higher than both MIL-100(Fe) and the CS/BC polymeric matrix. The adsorption performance of the fabricated composite was evaluated through kinetics and isotherm studies. While isotherm studies revealed that the adsorption of DTIC onto the adsorbent can be well described by the Freundlich model, kinetics studies indicated that a combination of factors, rather than a single rate-limiting factor, are responsible for the adsorption rate. Thermodynamics investigation showed that the adsorption of DTIC to CS/BC-MIL composite is exothermic and occurs spontaneously. Additionally, due to the negative entropy change, it was established that the adsorption is governed by the enthalpy change. Exploring the solution chemistry revealed that the optimum pH for the adsorption process was about 4. Moreover, the CS/BC-MIL can selectively adsorb DTIC in the presence of other pharmaceuticals like doxorubicin (DOX). Furthermore, regeneration investigations disclosed that the composite holds its structural features and has an acceptable adsorption capacity after several cycles of adsorption/desorption.


Assuntos
Quitosana , Poluentes Químicos da Água , Quitosana/química , Adsorção , Celulose , Águas Residuárias , Dacarbazina , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio
2.
Int J Pharm ; 646: 123484, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37805152

RESUMO

In this study, a novel multifunctional nanocomposite wound dressing was developed, consisting of TEMPO-oxidized bacterial cellulose (TOBC) nanofibers functionalized with donut-like copper-based metal-organic frameworks (CuVB3 MOFs). These CuVB3 MOFs were constructed using copper nodes linked by vitamin B3 molecules, resulting in a copper nicotinate crystal structure as confirmed by X-ray diffraction. Electron microscopy confirmed the presence of donut-like microstructures with uniform element distribution in the synthesized MOFs. Through the incorporation of CuVB3 MOFs into the TOBC nanofibers, innovative TOBC-CuVB3 nanocomposites were created. Biocompatibility testing using the MTT assay demonstrated enhanced cell viability of over 115% for the TOBC-CuVB3 nanocomposite. Acridine Orange staining revealed a ratio of 88-92% live cells on the wound dressings. Furthermore, fibroblast cells cultured on TOBC-CuVB3 exhibited expanded morphologies with long filopodia. The agar diffusion method exhibited improved antibacterial activity against both Gram-positive and Gram-negative bacterial strains, correlating with increased CuVB3 concentration in the samples. In vitro cellular scratch assays demonstrated excellent wound healing potential, with a closure rate of over 98% for wounds treated with the TOBC-CuVB3 nanocomposite. These findings underscore the synergistic effects of copper, vitamin B3, and TOBC nanofibers in the wound healing process.


Assuntos
Celulose Oxidada , Nanofibras , Niacina , Celulose Oxidada/química , Celulose Oxidada/farmacologia , Cobre/química , Nanofibras/química , Niacinamida , Cicatrização , Bactérias , Antibacterianos/farmacologia , Antibacterianos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...